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On the cooling of ascending andesitic magma

By B. D. MARsH
Department of Earth and Planetary Sciences, The Johns Hopkins University,
Baltimore, Maryland 21218, U.S.A.
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In ascending through the lithosphere, andesitic magma probably cools by about 300 K.
Since the ascent velocity and dynamics of ascent are unknown, several different pheno-
menological cooling models are considered to account for this temperature decrease.
These results are compared to the phase relations of andesitic magmainorder to estimate
an ascent velocity which can be used to investigate a dynamic model of ascent. The
cooling models approximate an initially crystal-free magma ascending by elastic crack
propagation (plate model), viscous blobs (spherical model), and by flow up a pipe. It is
shown that heat transfer is predominantly by convection and conduction, and that an
adiabatic ascent is unlikely. The calculated cooling curves have the general shape of the
geotherm and are concave to the liquidus and solidus of the magma. Hence the magma
is likely to become superheated over much ofits ascent which precludes crystal fractiona-
tion, and the petrology of the lavas seems to support this. For a viscous sphere of magma
the ascent velocity must be greater than about 10~ ms—, but for a crack of the same
volume, because of its large surface area, ascent is at least 1073 ms~1. Because of the
paucity of mantle xenoliths in andesitic lavas, this latter ascent velocity seems unlikely.
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INTRODUCTION

On its way to the surface, andesitic magma must traverse the lithosphere, a region where the
Earth’s temperature changes by more than 1000K. Magma ascending infinitely slowly will
maintain thermal equilibrium with the lithosphere and solidify at depth. A rapid ascent may be
adiabatic and, providing the magma initially contains few crystals, it will appear superheated
at the surface. The final magma temperature will in general be proportional to the ascent velocity
and to the temperature differential between the magma and the local lithosphere; the rate of
cooling will increase greatly as the surface is approached. For magma ascending through the
lithosphere a family of cooling curves can be calculated as a function of ascent velocity without
a detailed knowledge of the dynamics of ascent. Since the magma must arrive without solidifying,
the magma liquidus-solidus relations can be used to estimate a range of probable ascent velocities.
Once a range of ascent velocities is estimated the conditions under which a dynamic model
satisfies this requirement can be explored.

These models are intended to describe magma ascent beneath an island arc, specifically the
Aleutian arc where the tectonics and geography of volcanism are relatively well known.
Volcanism occurs here at discrete, fairly evenly spaced (ca. 70 km) volcanic centres along the arc.
Two volcanoes, Bogoslof and Amak, lie 50 km north of the main arc, but the volcanism is in
general restricted to a narrow (ca. 10 km) volcanic front where the magma is sporadically emitted
from the same locations for the lifetime of the arc. Once the spatial pattern of volcanoes is estab-
lished it remains relatively fixed; over millions of years magma bodies travel the same path
through the lithosphere. This general path must become increasingly warm thereby insulating
the magma and allowing it to rise more slowly without solidifying.

Although these models do not depend critically on a specific means of magma generation,
when an example is cited it is drawn from the Benioff zone magmatism model (Marsh 1973;
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612 B.D. MARSH

Marsh & Carmichael 1974; Marsh 19764, b, ¢). Magma is primarily produced through partial
melting of subducted oceanic crust, quartz—eclogite, at a depth of 100-150km and a tempera-
ture of 13501450 °C.. In the near-surface environment a typical magma may contain about 1 9,
(by mass) or less of water. Its first phenocrysts, anorthitic plagioclase, begin crystallizing at
about 1200-1250 °C at perhaps 3-7kbar? total pressure, and the eruption temperature is about
1100 °C. The spatial distribution of volcanic centres can be interpreted to arise from the gravita-
tional fluid instability of andesitic magma in the region of the Benioff zone. In traversing the
lithosphere the magma probably cools by 200-300 °C, and cooling models which account for this
temperature drop are sought to estimate an ascent velocity.

HEAT TRANSFER
Adiabatic ascent

From an ascending body of magma heat is conducted across the magma-wall rock interface
and then convected away by the wall rock. If the wall rock is a perfect insulator the magma will
not cool by conduction or convection but only adiabatically. Since rock is not a perfect insulator,
for an adiabatic ascent the heat lost to the wall rock must be replaced exactly by heat production
within the magma. This possibility can be evaluated by expressing the previous statement in the
form (Batchelor 1967, p. 156):

DS\ . (DT DR _aaes 2 (5,21, =
7 (57) = (o) -7 () = 24+ ag (g e = W

which describes the change in entropy (S) in a single-phase compressible fluid, where D/D¢ is
the material derivative, p is density, T is temperature, ¢ is time, V is velocity, C, is specific heat
at constant pressure, X is a spatial coordinate, A is the coefficient of viscous expansion, & is thermal
expansion, P, is the hydrostatic pressure, A is the trace of the dilational tensor, K, is thermal con-
ductivity, and e describes any source of entropy (e.g. crystallization, viscous dissipation).
Reversible cooling due to adiabatic expansion is described by the second and third terms; for an
andesitic liquid this amounts to about 60 °C per 100 km. The fourth term describes an irreversible
addition of energy to the fluid through frictional effects during expansion, this effect is difficult
to evaluate since A is unknown, but it is generally small (Batchelor 1967) and it is henceforth
neglected. To satisfy (1) the last two terms must be numerically equal and of opposite sign. This
possibility is now evaluated.

Viscous dissipation due to internal convection is a likely heat source; here ¢ is proportional to
#V?/d?and theloss of heat by conduction is proportional to K. A T/d2. The importance of¢ relative

to conduction is given by
pV2K AT, (2)

which is the so-called Brinkman number, where g is viscosity, and AT is the temperature differ-
ence which drives conduction and convection over the distance d. For g = 10~1 Kgzm=—!s,
¥V = 10'ms! (as observed in Hawaiian lava lakes), K. = 4 Kgms—3K-1, and AT = 10, (2) is
about 10~%. An even more general and startling measure of this imbalance is found by using the
results of Hewitt, McKenzie & Weiss (1975). Thus conductive losses are greatly more important
than the heat gained through viscous dissipation. If instead of viscous dissipation ¢ is assumed to

1 1 kbar = 10° Pa.
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COOLING OF ASCENDING ANDESITIC MAGMA 613

be heat produced by crystallization it is clear that, in order for crystallization to proceed, the
magma must cool (neglecting H,O-saturated decompressional crystallization) and hence
¢/(KcAT/d?) must again be less than unity. Crystallization during ascent is a nonadiabatic effect.

Adiabatic ascent of magma seems an unlikely occurrence. This is consistent with Lang’s
(19%72) result which showed an adiabatic ascent to be nearly isothermal. This would produce
a superheated lava which is not common (i.e. no phenocrysts) among andesites. The remainder
of this paper assesses magmatic cooling due to convection and conduction of heat by lithospheric
wall rock during ascent.

Non-adiabatic ascent

In addition to convective—conductive heat transfer and adiabatic cooling mentioned already,
magmatic cooling may also be influenced by volatile loss, fusion of wall rock, interfacial chemical
reaction, and viscous dissipation in the wall rock. The effect of these sources on any cooling model
is summarized in the following equation describing the thermal state of magma with approxi-
mately constant thermal diffusivity (K), specific heat (C,), and density (p):

or _oT 02T

o tax, ~ Kax te/rG (3)
the heat sources are described by e. To judge the relative importance of the terms in (3) it is
convenient to introduce the dimensionless variables 7" = T|AT,, ¢’ = Kt[a?, 0'[0X; = a0[0X;
and V' = I}[Vj,. Because ¢ can take on several different forms it is left in its primitive form. Upon
substitution and rearranging (3) becomes

oT”

27 2
+PV’(6T) T ea

Peis the Peclet number (I, a/K), V0 is a characteristic ascent velocity, ATj is a typical temperature
difference between the magma and the wall rock, and « is a characteristic size (radius) of the
magma body. These scales are chosen to make the magnitude of each primed quantity (i.e. the
derivatives) of order unity. The importance of convective relative to conductive cooling is
measured by Pe, and the importance of heat sources relative to heat transfer is given by the ratio
of the last term to Pe.

To anticipate later results, for a rather slow ascent velocity of 10-"m s-1, ¢ = 1 km, and
K = 10-9m?2s~1, Pe is found to be 100. Convective cooling is at least one hundred times more
important than conduction.

If the magma saturates with H,O the heat taken for exsolution will cool the magma (Burnham
& Davis 1974) as will subsequent escape of the exsolved fluid into the wall rock. To evaluate this
heat sink, detailed knowledge of bubble nucleation and migration and wall rock permeability
must be available. Hori (1964), in considering the effect of convective cooling by ground-water
to be like fluid flow from an intrusive, found that convective cooling would be about as important
as conductive cooling. That is, the last term in (4) is approximately unity; however, since Pe
is large this effect is less important than convective-conductive cooling by the moving wall rock
itself. Moreover, since andesitic magma appears to be undersaturated with H,O even in the
near-surface environment (Marsh 1976a; Ewart 1976), this means of cooling is for the most part
unimportant until the body is very near the surface. As the magma nears the surface its ascent
velocity may decrease whence, with certain values of wall rock permeability, this effect could
become important. An approximate method of treatment of this matter is given by Jaeger (1964).

At the magma-wall rock interface chemical reaction between the magma and the wall rock
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614 B.D. MARSH

may affect heat transfer from the magma by providing a source or sink for heat. For a first-order
chemical reaction taking place on the surface of a solid sphere, Chen & Pfeffer (1970) found heat
transfer to be enhanced — or hindered, this depending on the sign of the enthalpy change — by
2B/Pét, where B? is the last term in (4). Judging from the results of Levich (1962), for a liquid
sphere (i.e. magma) this may become 2B[Pet. To determine B, however, the reaction rate
constant must be available, but since this is generally unknown this effect cannot be evaluated.
It is probably not important.

The effect of wall rock fusion on heat transfer can be estimated qualitatively. If during the
wall rock-magma interaction the wall rock temperature increases by, say, AT, without fusion
the magma must supply energy amounting to pC, AT, while with fusion the necessary energy is
approximately pC, AT +pLAT[(Ty,—T); L is the heat of fusion, T3, is the wall rock liquidus
temperature, and T is its solidus temperature and each is at the appropriate pressure. The effect
of wall rock fusion is to raise the apparent heat capacity of the wall rock which lowers its thermal
diffusivity (K = K¢/pC,) — otherwise considered approximately constant — and in turn increases
Pe. For reasonable values of L and (77, — T;) the apparent heat capacity, and hence Pe, is doubled.
As shall be shown later, doubling Pe increases the overall heat transfer from the magma by 4/2;
this effect is not significant. More qualitatively, raising the apparent wall rock heat capacity
through fusion enables the same amount of heat to be carried away by a smaller volume of wall
rock. With wall rock fusion the magma must supply twice as much energy as is needed without
fusion to raise the wall rock temperature by the same amount.

The presence of crystals within the magma can supply heat through crystallization or absorb
heat when they undergo fusion. During magmatic crystallization the heat evolved allows the
magma to cool more slowly. Yet even when there is only conductive cooling of the magma by the
wall rock (i.e. when the ascent velocity is zero) the magma temperature must still drop with time
to sustain crystallization; thus the last term in (4) must be less than unity. When the magma is
ascending, Pe¢ can become large and, providing it is sufficiently large, the additional heat of
crystallization will hardly affect magmatic cooling (i.e. (ea?/KcAT)[Pe < 1).

Crystals initially in the magma when the magma begins ascent which are later melted use up
energy during fusion and hence they have the effect of buffering the magma temperature. This
effect can seriously affect magmatic cooling, as shall be shown later, yet it is difficult to treat. So,
instead, for the present a standard state is chosen to be a magma which isinitially crystal-free, and
this effect will be discussed again later.

The energy available for viscous dissipation during wall rock deformation is bounded by the
rate of loss of potential energy by the magma during ascent, ¢ < ApgV, where Ap is the density
difference between magma and wall rock. The last term in (4) then becomes ApgVa?/K.AT. As
defined earlier, a is a typical length scale associated with the magma; here, however, for an
accurate evaluation of this quantity ¢ must be taken as the thickness of the thermal halo about
the magma. For all but the slowest ascent velocities (i.e. V' ~ 10-8ms~1) this length is about one
tenth or less of the body radius. With Ap = 0.5 x 103kgm™3, g = 10ms~2, K, = 4.1 Wm~1deg1,
AT = 102K, and to anticipate later results V' = 10-3m s, and ¢ = 10?m, this quantity isabout 1.
Yet since Pe is thought to be large (greater than about 100) magmatic cooling will be relatively
unaffected by wall rock heating due to viscous dissipation during deformation; hence this effect
is also neglected in the cooling model.

In conclusion, the sum of the processes contributing to ein (4) is probably much less important
than magmatic cooling due to convective-conductive heat transfer away from the magma by the
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COOLING OF ASCENDING ANDESITIC MAGMA 615

moving wall rock (i.e. ea?/ KA T)[Pe < 1). Thisis only true for a moving body of magma. Once the
body stops crystallization becomes important. If the body moves sufficiently fast heat production
in the wall rock due to viscous dissipation accompanying deformation may hinder cooling. These
conclusions hold principally for magma ascent by viscous deformation of the wall rock.

Critical parameters

Body shape and size are the most important parameters in formulating a heat transfer model.
Any solution to the energy equation (4) at small Pe will be proportional to the dimensionless
group Kt[a* (Fourier parameter), while at large Pe it is proportional to Pe. The size of the body is
characterized by @ and, since it is contained in these dimensionless groups, initially it need not be
directly considered. In the end, however, to extract an actual ascent velocity a judicious choice of
size is necessary. This is discussed later.

The shape of an ascending magma depends on its mode of transfer. Transmission by elastic
crack propagation will produce a dike-shaped body where the aspect ratio (length/width) is
about 2500 (Weertman 19714, b; Takeuchi & Kikuchi 19%3; Pollard & Muller 1976). Here a thin
plate or a strongly flattened ellipsoid adequately approximates the body shape.

Judging from the nature of plutons in the Aleutian Islands, diapiric rise of viscous blobs of
magma represents another likely mode of magma transmission through the lithosphere. At low
fluid velocities (small Reynolds number) inertial effects are negligible in deforming a blob of
fluid from the shape of a sphere (Batchelor 196%), hence the shape of magma rising as a viscous
diapir can be safely approximated as a sphere. An ellipsoidal form could just as well be used; the
results for any roughly spherical body are hardly different.

The experiments by Grout (1945) which are commonly quoted as evidence that rising blobs
of magma may be roughly spherical suffer from the effects of surface tension, and are on this
aspect unrealistic.

Formulation and calculations

Regardless of the exact mode of magma transfer a phenomenological model which accurately
describes its cooling can be constructed without knowledge of the intricacies of the dynamics of
ascent.

Viscous sphere

A large blob of magma is imagined to rise through the lithosphere by softening a thin rind of
wall rock causing it to flow past the magma. Heat conducts from the thermally well mixed magma
across its border and is carried away by the moving wall rock. The situation is similar to monitor-
ing heat loss from a hot drop of fluid falling through a cooler fluid; this has been widely investi-
gated for industrial purposes (e.g. Kronig & Brink 1951; Bird, Stewart & Lightfoot 1960, p. 409;
Levich 1962, p. 404; Head & Hellums 1966). An analytical solution essentially involves finding
the relation between the temperature field and velocity field both inside and external to the
magma. Since a complete analytical solution to this problem has yet to be discovered, a pheno-
menological approach is preferred.

The total heat flux (@) leaving a globe of magma is proportional to the product of its surface
area and the temperature difference between the magma (7') and the mantle wall rock far from
the magma (Tw(f)); the wall rock temperature diminishes in traversing the lithosphere and
hence it is a function of time. The magma temperature and all physical properties are taken to be

averages. Q ~ 4ma*(T—Tn()). (5)
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An equality is made by defining a heat transfer coefficient /4 containing all the complicated
effects of the thermo-mechanical interaction between the moving magma and the wall rock.
Then, (6) is a definition of A.

Q = 4na®h(T—Tw(2)). (6)
It is convenient to express % in terms of the dimensionless group ah/K,, which is the so-called
Nusselt number, Nu. For forced convection, which is the present concern, one can show Nu to be
a function of Pe on dimensional grounds (e.g. Bird e al. 1960, chapter 13). Equating Q to the time
rate of change of magma internal energy,

dE/dt = 4na®pC,dT|dt = — Q, (7
substituting (6) with 2 = NuKc[a gives
dT[dt+JT = JTu(t), (74)

where J = 3NuK/a?. Multiplying (7a4) throughout by the integrating factor e’¢ allows it to be

integrated:
T = Je~7t [ e/tTw (1) dt. (8)

The role of Nu is now evident: it is a measure of how seriously cooling is affected by wall
rock convection, interfacial melting, crystallization, etc. The response of cooling to these effects
can be handled by an appropriate choice of Nu. For a solid sphere motionless in a fluid Nu = 1
and Pe = 0, cooling is solely by conduction. Moving the body causes convection to be important
and Nu increases proportionally with velocity. Internal magmatic convection similarly increases
the internal Nu, yet since the bulk of the resistance to cooling comes from the wall rock, the
external Nu is the rate controlling factor. Internal convection here is not a question of Rayleigh—
Bénard stability. That is, the horizontal temperature gradients, cooler near the border and
warmer in the core, experienced by the magma will force it to convect sufficiently rapidly to
make the transfer of heat (i.e. Nu) to the border large. Hence magmatic cooling is dependent on
the ability of wall rock to dispose of heat.

Although a good many experiments have measured Nu for a sphere, these are almost exclusively
for a solid sphere (e.g. Bird ¢t al. 1960, p. 409). Using a low Reynolds number boundary-layer
approach and assuming the fluid velocity and stream function on the body surface to be similar
to the Hadamard—-Rybczynski (1911) result, Levich (1962, p. 408) derived Nu as a function of

Pe for a liquid sphere:
Nu = 0.46(Pe)*. (9)

This result holds only for large (i.e. greater than about 10) values of Pe, and it has been found to
compare favourably with the experimental results of Head & Hellums (1968) on heat transfer
from liquid drops.

The final expression describing magmatic cooling is obtained from (8) by choosing a suitable
function for the time variation of the wall rock temperature (7m(t)). The geotherm chosen here
primarily for mathematical convenience and its resemblance to an actual geotherm is Tim(¢)
= T cos (nt[2t,); where Tj is the temperature in the source region, and f, is the total ascent time.
The constant of integration is determined using the initial condition 7" = 7 when ¢ = 0. The

% = {(‘b—])zcos (b2) +—b—Jsin (bt) + e"’t} {(bi)z + 1}_1, (10)

result is
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COOLING OF ASCENDING ANDESITIC MAGMA 617

where J = 3NuK/a® and b = n/2f,. This solution is entirely equivalent to solving (8) with
Tm = T; and then, through the use of Duhamel’s theorem (see below), convolving this result
with Ty (2).

To use (10) an ascent velocity is chosen, Pe is found, and Nu is recovered from (9) and sub-
stituted into (10) and T/Tj is then given as a function of the dimensionless time Kt/a2 The choice
of Pe is, however, not independent of Kt[a? which also gives the ascent time; they are connected
through the ascent distance L. That is, let K¢/a* = A, then the ascent time is ¢ = 44?/K, the
ascent velocity is V = LK[Aa? and Pe = L|Aa where the dimensionless parameter L/a = n now
appears. Substituting z for Lja and Kt/a? for 4 into the result for Pe changes (9) into

Nu = 0.46(na?/K¢)3. (11)

0.8

depth, Z|Z,
o
D

o
S~

0.2

0 | ! | -
04 0.6 0.8

| :
0.4 06 0.8 1
temperature, T[T,

Ficure 1. (a) Cooling by convection and conduction of a liquid sphere of magma of radius 0.8 km as it traverses
lithosphere having a geotherm as shown. Labels are as given in figure 2. For curve 1, the ascent velocity (V)
is ca. 10-% m/s, the Fourier parameter (Ki[a?) is 10-1, the Nusselt number (Nu) is ca. 17.8 and the Peclet
number (Pe) is ca. 1.5 x 10%; for curve 2 these values are 10-5, 10-2, 56.2 and 1.5 x 10* respectively; and for
curve 3, 10~4, 10-3, 178.2 and 1.5 X 10° respectively. Note the relatively large values of Pe¢, and compare
these and ¥V with those of (b) which is for a larger body. (b) Cooling by convection and conduction of
a liquid sphere of magma of radius 6 km as it traverses lithosphere having a geotherm as shown. For curve 4,
the ascent velocity is ca. 10-8 m[s, K¢[a? is 1.0, Nu is ca. 2.0 and Pe is ca. 9.5; for curve 5 these values are
10-7, 10-1, 6.5 and 10?2 respectively; and for curve 6, 10-%, 10-2, 20 and 108 respectively. See legend of figure
2 for other information.

Evidently any cooling curve calculated using (10) and (9) or (11) is completely characterized,
for convective-conductive cooling, by choice of the dimensionless group Ki/na®. In practice,
however, L is the thickness of the lithosphere and any choice of # and ascent velocity or Ki/na?
involves choosing a characteristic body size; the inherent connection between Pe¢ and K¢/a?
necessitates choosing a.
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618 B.D. MARSH

Cooling curves calculated using (10) and (11) are shown in figures 1a and 4. (These curves
were inadvertently calculated with the constant in (9) and (11) being 0.23. For the curves of
interest here this small correction has not warranted recalculation.)

Elastic crack

Here the magma is quickly injected from one point to another; it is essentially continually
thrust into contact with a medium at a lower temperature. The problem can be viewed as a body
of initial temperature 7y which is placed in contact with a medium (the wall rock) of tempera-
ture 7. This problem for a semi-infinite plate has been considered by Williamson & Adams
(1919), and from their solution the average temperature (7') at any time is given by

T-Tm 8 & exp{—(2m—1)*n®Kit/4a?} (12)
I—Tm 72,2y (2m—1)* '

This result is for a constant wall rock temperature, but it can be adapted to a variable wall rock
temperature (7Tm(f)) by convolving (12) with T (#). This result is a good deal more cumbersome
than the previous result and it has proven more convenient to use (12) in a simple numerical
scheme. The wall rock temperature Ty, is varied (temporally) from one location to another during
ascent by solving (4) at n locations where the nondimensional time spent at each location is 1/z of
the total ascent time (K#/a%) and the initial temperature at the nth location Tj , is given by the
final temperature at the n — 1 location (i.e. Tj ,, = T,,_;). The use of (12) in this manner also allows
great flexibility in choice of the functional form for the geothermal gradient. This scheme, how-
ever, is only stable when # is small (less than about 25), and these results are not as accurate as
the previous ones.

The boundary condition used to derive (12) was that the boundary of the magma was instantly
placed in contact with wall rock of temperature 7Tm. For a moving wall that is continually
brought into contact with fresh, cool wall rock it is the most likely and accessible boundary
condition to apply. This boundary condition certainly places an upper bound on how fast the
magma cools and if the crack moves very fast this is sufficient. If heat is conducted ahead of the
body, however, the magma will travel with a halo of heat (thermal boundary layer) about it.
Lovering (1935), Ingersoll, Zobel & Ingersoll (1948) and Jaeger (1964) found for a body of
magma placed instantly in contact with a cooler medium, but without holding the boundary
temperature constant, that the boundary temperature quickly reaches a temperature which is
the average of the two initial temperatures and this temperature persists for a large fraction of the
total cooling time. Thus to relax the above boundary condition a contact temperature (at the
nth position) which is the average of the magma (at the n— 1 position) and the undisturbed wall
rock temperature was also used. Cooling curves for these models are given in figure 2.

Pipe flow

Heat transfer between a hot fluid and a cooler pipe wall or surrounding medium has been
studied extensively (e.g. McAdams 1954; Knudsen & Katz 1958; Roshenow & Choi 1961; Kays
1966; Morton 1960; Gupta 1973). Here the problem is more involved than either of the previous
problems. When hot fluid enters a pipe and encounters a change in wall temperature, it begins
to develop steady velocity and temperature profiles. The lengths of pipe encountered before these
steady profiles develop are called, respectively, the hydrodynamic and thermal entry lengths;
these lengths are a function of the Reynolds number and Prandtl number (Kays 1966, p. 119).


http://rsta.royalsocietypublishing.org/

-

—
3~
olm
~ =
k= Q)
= O
= uwv

PHILOSOPHICAL
TRANSACTIONS
OF

A

A
s

/7

9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

COOLING OF ASCENDING ANDESITIC MAGMA 619

The Prandtl number, a ratio of momentum diffusivity to thermal diffusivity, here is large
(¢a. 10%) implying that the magma velocity profile will be fully developed (i.e. reach steady state)
much sooner than the temperature profile. Thus the velocity profile can be assumed fully
developed upon entering the pipe. The thermal entry length depends on the boundary con-
ditions, but in general it is proportional to aRePr, or Va?/K where a is the pipe radius. For
V~10"ms a ~ 1km, and K ~ 10~¢m?2s-1, the thermal entry length is about 100 km. Since
this is of the same order as the total ascent distance, the temperature profile will probably never

1

0.8

0.6

depth, Z|Z,

0.4

0.2

temperature, T T,

Ficure 2. Cooling by conduction of a thin plate of andesitic magma as it traverses lithosphere possessing a geo-
therm as shown. From the dimensionless ascent time (K¢[a®) given against each curve an ascent velocity
can be calculated by choosing a value for a. The liquidus and solidus are for an andesitic magma containing
about 1%, H,O by mass (Green1972), and dry mantle solidus, labelled m, is from Wyllie (19771). The cooling
curves are for a magma initially containing no crystals; these curves do not apply below the liquidus. The
solid curves represent cooling due to unpreheated wall rock, and the dashed curves are for preheated wall
rock (but see text).

become fully developed. In addition, since the wall rock temperature (far from the pipe) con-
tinually changes with distance from the source, it is certain that no fully developed temperature
profile will occur in magma flow in a pipe-like conduit traversing the lithosphere. Because of this
unsteadiness no single Nusselt number can be used for the entire ascent, unlike in the case of a
viscous sphere. Instead, the Nusselt number will be a function of distance from the source. Of
course, if the magma moves up the pipe at 10~8 or 10~? m s~?, the thermal entry length is shorter.
Velocities of this magnitude are considered unreasonably small.

Although a complete description of heat transfer from a fluid-filled pipe is impossible (but see
Morton (1960) and Gupta (1973)), for simple cases certain interesting results can be found.
Analytical solutions to heat transfer from fluid flow in a pipe can be obtained by specifying either
a constant wall temperature or a constant heat flux along the pipe wall. And since the governing
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620 B. D. MARSH

energy equation is linear and homogeneous, a sum of various solutions is also a solution. This
property enables the constant wall temperature and the constant heat flux solutions to be used
to obtain solutions with a variable boundary condition along the pipe. This amounts mathe-
matically to convolving the initial solution with the desired function for the variable boundary
condition. This procedure is also known as Duhamel’s theorem (Carslaw & Jaeger 1959; Kays
1966). Because itis convenient to tie all calculations to the wall rock temperature, here the variable
wall temperature problem seems more applicable; cooling outside the pipe is by conduction.
The simple function Ty, = Tj cos (nx/2), where x is the fraction of the total ascent distance, is again
chosen to describe the wall temperature; the details of the ensuing results hardly depend on the
exact choice of this function, but for more complicated functions the resulting convolution integral
is usually impossible to evaluate analytically.

1—

0.8~

0.6

depth, Z|Z,

0.2

04 06 08 1
temperature, T[T,

Ficure 3. Cooling of magma as a function of ascent velocity or Peclet number (shown against the curves) as
it flows up a pipe through lithosphere having a geotherm as shown. See legend of figure 2 for other labels.

The method of Kays (1966, chapter 8) is followed: his derivation is detailed and thorough and
only a description of this method is of interest here. The energy equation is solved for hydro-
dynamically fully developed laminar flow with a parabolic (Poiseuille) velocity profile and with
constant wall temperature beginning at the origin. This solution (Kays’s eqns (8-33, 8-34)) is
then convolved with the function describing the wall temperature. The mean magma tempera-
ture (77) as a function of distance from source, where the temperature is 7;, and ascent velocity
is found to be

T-T, © GyA,
Ty M+ Pe

1 Pe? . Pe? 128
[cos (3mx) —1 +—AT sin (47x) +-;1—2—{exp (=38 mx/Pe) —1}|, (13)

where Pe is the Peclet number (Va/K) and A, are the eigenvalues and G, are numbers derived
from the eigenfunctions obtained from the solution of a Sturm~Liouville-type equation associated


http://rsta.royalsocietypublishing.org/

A

JA Y\
AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

y \

Y,

A A

Py
a \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

COOLING OF ASCENDING ANDESITIC MAGMA 621

with this problem. For completeness, when n > 2, A, = 4n+8, G, = 1.01276 A;%, and for
n=20,1,2,A? = 7.312, 44.62, 113.8, and G = 0.749, 0.544, 0.463, respectively (Kays 1966,
p. 125).

A set of cooling curves calculated by summing (13) numerically is presented in figure 3.

DiscussiON OF COOLING CURVES

In order to isolate the cooling effects dependent only on the heat transfer models the curves
displayed do not contain the contribution to cooling from adiabatic expansion; if desired, this
effect, which at Z/Z; = 0 can be shown to be T/T, ~ 0.95, can be added linearly. Strictly speak-
ing, these curves do not apply at temperatures below the liquidus or for a magma initially
containing crystals (but see below).

The shapes of the cooling curves are all quite similar. This is due to the shape of the geotherm.
Several other functional forms for the geotherm were also used in the calculations and the resulting
cooling curves differ little from those presented.

The effect of different boundary conditions is readily apparent in these figures. For a magma-
filled crack moving past wall rock at a temperature equal to that of the ambient lithosphere
cooling takes place about five times faster than when the wall rock is preheated by advancing
magma. That is, for no preheating the magma must travel about five times faster if it is to
reach the surface at the same temperature as a magma moving through preheated wall rock.

The Nusselt-number formulation for the viscous sphere moving through fluid wall rock offers
the most complete description of heat transfer and these results are also probably the most
accurate. These results involving two interrelated dimensionless groups dictate choice of body
radius, and hence figures 14 and 4 show only curves for radii of 0.8 and 6 km.

A typical ascent velocity can only be extracted from any of these cooling curves if a character-
istic body size is known. It is difficult, but obviously important, to determine a characteristic
radius or volume for an average parcel of magma moving through the Earth. The only volumetric
data available are obtained from extruded magma and the estimated volumes and shapes of
exposed plutons. From the area containing many plutons mapped by Moore (1963) in the
Sierra Nevada, Fyfe (1970) estimates an average pluton to have a volume equivalent to a sphere
with a radius of from 3 to 7 km. Plutons in the central Aleutian Islands (e.g. Adak Island) have
equivalent sphere radii of about 1—-4km. Like plutons, lava volume represents only a lower
bound on the size of its associated magma chamber. Many volcanoes in the Aleutian Islands (see
Coats 1950) seem to result from one, albeit sometimes long, period of volcanic activity, indicating
perhaps that the size of a volcano may be a rough measure of the volume of'its associated magma
chamber. The volume of these composite and stratocone volcanoes can be approximated fairly
well by a cone of radius equal to its height. The radius of a sphere having a volume equivalent to
this cone is 0.625 of the volcano height. The largest Aleutian volcano has a summit elevation of
about 3 km (Shishaldin) while more commonly the relief is about 1.75km implying equivalent
sphere radii of about 1-2km which agrees roughly with the pluton result. In a detailed aero-
magnetic study of some volcanoes and calderas in Japan, Muroi (19%3) has interpreted the
anomaly-causing bodies to have radii similar to those estimated for the Aleutian plutons. The
radii associated with figures 1a and b were chosen as a result of these considerations.

If these volumes of magma are used to fill an ellipsoidal crack of thickness 24, and aspect
ratio R the half-thickness of the crack is given by a. = as R~¥, where 4 is the radius of a sphere of
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equivalent volume. Based on two-dimensional equilibrium profiles of cracks in an elastic medium
typical values of R are from 103 to 10* (Weertman 19714, b; Pollard & Muller 1976). Hence for
equivalent volumes of magma the values of Ki/a? in figure 2 will be R# times smaller than those for
a spherical body. If a magma-filled crack is to arrive at the surface at the same temperature as
a ball of magma of equivalent volume it must travel R? times faster than the ball of magma.With
all else being equal, for example, a crack with an aspect ratio of 103 must travel 10* times faster
than a sphere of magma in order to arrive at the surface at the same temperature.

The results for flow of magma through a pipe (figure 3) are given in terms of the Peclet number.
For values of Pe greater than about 5 x 10% ascentis nearly isothermal. If the erupted magmais to
fit the petrologic characteristics stated already, aside from adiabatic cooling, Pe¢ must be less
than about 5 x 103, This sets an upper bound on the velocity; since the wall rock thermal diffu-
sivity is about 10~¢m?s~1, ¥ < 5 x 10~3/a where a is the pipe radius. In the Aleutian Islands the
volcanic centres — not the volcanoes — are on the order of 10 km in radius. Geologically reasonable
conduit radii surely lie within the limits of 0.1 to 10km, which give an upper bound of ascent
velocities of 5x 10~% to 5x 10~"ms~. Judging from the volume of lava and subcontinental
crust which has accumulated in the central Aleutian Islands over the course of about 60 Ma, the
larger velocity (smaller radius) is probably most applicable. The pipe model has the inherent
disadvantage that for a 120km column of magma the non-hydrostatic pressure developed
relative to the higher density wall rock will cause the magma to flow at a large velocity. The non-
hydrostatic pressure is given by AP = ApgL, where Ap is the density contrast, g is gravitational
acceleration and L is the ascent distance. For sensible values of Ap and with L on the order of
100 km, AP is about 1 kbar or more, and since this is beyond the strength of most rocks, the pipe
could not be capped. The ascent velocity at the centre of the pipe due to this pressure gradient is
V = (AP|L) a?|4u, where a is the pipe radius and ¢ is the magma viscosity. Even for unfavourable
values of a (1 m) and x (104 P7), the ascent velocity is at least 1 ms~1, and the magma will ascend
isothermally. Although near the surface (less than about 25km) magma may be transported
from a magma chamber to the volcano by flow similar to that in a pipe, it seems unlikely that
magma can be transported from the Benioff zone to the surface solely by this means.

To estimate an ascent velocity cooling curves must be selected from those possible which fit
with the observed petrologic characteristics of andesitic lavas. Aleutian and Tongan lavas
are characterized in general by 1-50 9, modal phenocrysts, a lack of high pressure phases
(P > ca. 10kbar) indigenous to the magma, and a paucity of mantle-derived xenoliths (Marsh
1976 a; Ewart 1976). The presence of phenocrysts deny that the magma was superheated just
prior to eruption. The nature of the phenocrysts themselves reflect crystallization at low pressures
and high temperature (i.e. P ~ 5kbar, T' ~ 1100-1250 °C). If crystallization also took place at
greater pressures, high-pressure phases should occasionally be found in the lavas. Thus a probable
cooling curve might be one which strikes the liquids at a depth of less than about 20 km. If so,
the magma is superheated over much ofits ascent. Some evidence seems to support this possibility.
Although rare, occurrences of mantle-derived olivine have been reported from one Aleutian
lava (Marsh 19764) and from the recent Tongan eruption on Metis Shoal (Ewart ez al. 1973).
These olivines are large, unzoned, sometimes slightly strained and of similar composition. Oddly
enough, however, no coeval minerals (e.g. orthopyroxene, spinel, clinopyroxene, or garnet)
have been found in these lavas. Since many cooling curves which strike the liquidus at depths of

t 1P =10"1Pas.
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0-20 km indicate that the magma is able to fuse the mantle, this singular presence of olivine, the
mantle liquidus phase, may suggest that its coeval phases have been fused by the magma.

The presence of crystals in the initial magma holds the magma temperature near its liquidus
until they are fused. The distance the magma must ascend before these crystals vanish by
fusion depends on the ascent velocity (cooling path), heat of fusion, and volume fraction of
crystals present. Nevertheless since the heat of fusion of these crystals is probably near that of
diopside, 20.4 J g1, to melt 10 9; of the crystals involves a loss of energy equivalent to a tempera-
ture decrease of about 25 K, assuming a specific heat of 0.1 J g~ K-1. Hence in figures 14 and 2,
for example, for that group of cooling curves which strike the liquidus within about 25 km of the
surface the magma will remain near its liquidus for about the first 10 9, of its ascent. The result
of crystals being present during the early stages of ascent is to move the cooling curves to lower
temperatures; curves which in the standard state (i.e. no crystals) intersect the liquids at, say,
1 bar will, with 10 %, crystals initially present, strike the liquidus at a few kilobars total pressure.
The temperature will never rise above the liquidus ifabout 40 9, crystals are initially in the magma
and do not drop out during ascent.

Once the superheated magma crosses its liquidus crystals will begin forming and the heat of
crystallization will create a heat source in the magma. In this region the magma may, depending
on its ascent velocity, cool more slowly than the standard state cooling curves indicate. The
importance of the heat derived from crystallization relative to that carried away by conduction
is given by the last term in (4). This number is difficult to evaluate because ¢ is so sensitive to the
nucleation rate, growth rate, and solidification time. Yet if crystallization is to take place the
magma temperature must drop with time, and thus this ratio must be less than unity. If crystalliza-
tion takes place at a uniform rate the magma may cool only about half as fast as indicated by the
cooling curves. This is because the addition of latent heat to the magma can be viewed as a
doubling of the magma specific heat (e.g. Jaeger 1964) and twice as much heat must be carried
away to cool by one degree than for the crystal-free magma.

These models of heat transfer are unrealistic in several ways. Magma is unlikely to ascend
from source to volcano at a constant velocity. The common and sudden occurrence of near-
surface earthquake swarms and harmonic tremor just prior to eruption of lava may signal a great
increase in ascent velocity. Magma may also cool by losing a portion of itself through freezing
near its margins and the formation of dikes and veins. And, since volcanic centres remain fixed
for millions of years, the average temperature of the ascent path will surely increase with time.
The uncertainties entered by these deficiencies are, however, probably well within the wide range
of estimated ascent velocities. That is, since a characteristic ascent velocity for island-arc magma
is completely unknown, an uncertainty in velocity of, say, two or even three orders of magnitude
issurely acceptable for the present. Despite this inherent uncertainty, clearly for any body shape
the velocity is relatively insensitive to the boundary conditions of heat transfer; widely different
calculations (many others by the author are not presented here) give essentially similar results.
This is not completely surprising since the basic feature of any boundary condition is the change
in wall rock temperature by more than 1000 K degrees through the lithosphere. This undeniable
condition dictates the results of any cooling model.

48 Vol. 288. A.
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CONCGLUSIONS

A rather general, simple, and convenient formulation describing convective and conductive
heat transfer from a magma moving through wall rock with a time-dependent temperature has
been found (equation (8)). This formulation allows the effects of wall-rock fusion, magma
crystallization, volatile loss, and any other mechanism of heat transfer or heat production to be
treated through a judicious choice of the Nusselt number, Nu.

The aim in constructing purely phenomenological cooling models is to estimate an ascent
velocity which can be used to investigate a dynamic model. Judging solely from the cooling
curves, a spherical magma with a radius of 1 km must ascend at a velocity of at least 10~"m s~ to
arrive at the surface without solidifying. A plate-shaped (crack) body of magma having the same
volume as the sphere must, because of’its large surface area, ascend at least 102 ms—. Ifandesitic
magma ascends with the latter velocity, ultramafic xenoliths from the mantle should occasionally
appear in the lavas, but these are rare. Hence the slower ascent velocities are more appropriate,
but, conversely, the faster velocities may apply to the ascent of alkali-basalts. If magma begins
its ascent with less than about 10 9, crystals it will become superheated and remain so over much
of its ascent. Superheating precludes changing the magma composition by crystal fractionation,
and in the near-surface environment the magma is apt to be near its liquidus. Phenocrysts may
typically form very near the surface which seems necessary from the preponderence of low-
pressure phenocryst phases ubiquitous in andesitic lavas.

If the magma ascent is governed dynamically by an equation similar to Stokes’s, because of the
great viscosity of the lithosphere the slowness of the ensuing ascent velocity ensures solidification
of the magma unless it is unreasonably large. To be useful, Stokes’s relation calls for a constant
wall-rock viscosity out to a distance of at least ten body radii from the magma, and this condition
is surely not met here. Instead the magma dynamics may be more closely governed by the
viscosity of the wall rock within a thin thermal halo about the magma. In a companion study, to
appear elsewhere, the ascent velocity of a hot viscous sphere which moves by softening a thin
rind of wall rock about it was found (some of the equations are given in Marsh 1977). These
results show the ascent velocity can only be increased to approximate that estimated from cooling
by partial fusion of the wall rock. About 30 %, melting allows the magma to ascend at 10~"ms~?;
this much melting probably takes place within about 50 km of the surface. Thus the ascent
velocity is probably variable, and the earliest bodies of magma do not reach the surface. Itis only
with repeated passage through the same region of the lithosphere that andesitic magma can
ascend as a viscous blob and reach the surface. Repeated use of such a chimney, which is the rule
in island arcs, heats the lithosphere locally which insulates succeeding magmas allowing them
to ascend more slowly and still reach the surface. A viscous blob of magma penetrating virgin
lithosphere probably moves at about 10~® to 10~ ms~1, After the chimney has been in use for
a few million years the velocity may increase to about 10~7 to 10-6ms—1.

W. M. Elsasser, S. H. Davis, G. M. Homsy, and J. A. Marsh kindly helped in a number of
ways. This work is supported by National Science Foundation Grant EAR-75-17617 to the
Johns Hopkins University. Travel funds were graciously supplied by the National Aeronautics
and Space Administration via grant NGS-5090 to the Johns Hopkins University.
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